New Rates for Exponential Approximation and the Theorems of Rényi and Yaglom1 by Erol
نویسندگان
چکیده
We introduce two abstract theorems that reduce a variety of complex exponential distributional approximation problems to the construction of couplings. These are applied to obtain new rates of convergence with respect to the Wasserstein and Kolmogorov metrics for the theorem of Rényi on random sums and generalizations of it, hitting times for Markov chains, and to obtain a new rate for the classical theorem of Yaglom on the exponential asymptotic behavior of a critical Galton–Watson process conditioned on nonextinction. The primary tools are an adaptation of Stein’s method, Stein couplings, as well as the equilibrium distributional transformation from renewal theory.
منابع مشابه
New Rates for Exponential Approximation and the Theorems of Rényi and Yaglom
We introduce two abstract theorems that reduce a variety of complex exponential distributional approximation problems to the construction of couplings. These are applied to obtain rates of convergence with respect to the Wasserstein and Kolmogorov metrics for the theorem of Rényi on random sums and generalizations of it, hitting times for Markov chains, and to obtain a new rate for the classica...
متن کاملConvergence theorems of iterative approximation for finding zeros of accretive operator and fixed points problems
In this paper we propose and studied a new composite iterative scheme with certain control con-ditions for viscosity approximation for a zero of accretive operator and xed points problems in areflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequencefxng dened by the new introduced iterative sequence is proved. The main results improve andcomplement the co...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملImplicit iteration approximation for a finite family of asymptotically quasi-pseudocontractive type mappings
In this paper, strong convergence theorems of Ishikawa type implicit iteration process with errors for a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings in normed linear spaces are established by using a new analytical method, which essentially improve and extend some recent results obtained by Yang ...
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کامل